
  
Abstract—In order to deal with nonlinear, time-varying, and 

multivariable constrained characteristics in closed-loop industrial 
processes, a multivariable constrained adaptive predictive control 
(CAPC) method based on closed-loop subspace identification is 
proposed. The state-space model is obtained through the closed-loop 
subspace identification algorithm, which is regarded as the system 
model. The algorithm is implemented online to update the R matrix 
with a receding window. By comparing the prediction errors before 
and after updating, it considers whether or not to update the system 
model. The model is then used to design the model predictive 
controller, which involves the solution of a quadratic program solving 
multivariable constraints. This paper presents a comparison between 
the performance of the proposed control method when applied to a 
2-CSTR system, and that of an open-loop subspace CAPC method. 
The superiority of the proposed method is illustrated by the simulation 
results.  
 

Keywords—Closed-loop Subspace Identification, Multivariable 
constraint, Adaptive Predictive Control, 2-CSTR 

I. INTRODUCTION 

odel predictive control (MPC) has been an attractive 
subject in the control theory field for decades. It has 

become more established in the industry as the one of the 
choices for control architecture, especially with the 
improvement of computational capabilities of processors [1-4]. 
The traditional industrial predictive control is based on the 
input-output model, and includes both parametric and 
nonparametric models. In order to improve the control 
performance, a state space model should be adopted so the 
modern filter theory and the design method of controllers 
developed in recent years can play a role [5-7]. However, MPC 
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was unable to obtain the accurate state-space model among the 
complex industrial targets due to the limitation of the identified 
method. The subspace identification method has changed this 
situation substantially; the control workers may be completely 
relieved from the tedious modeling via this mechanism. The 
accurate state-space model can be obtained when there is 
enough process input and output data [8-9]. 

In practice, it is often necessary to perform identification 
experiments on systems operating in a closed loop. This is 
especially true when open-loop experiments are not allowed due 
to reasons of safety (unstable processes) or production 
(undesirable open-loop behavior). System identification from 
closed-loop data is thus a relevant topic [10]. The identification 
of the subspace matrices from closed-loop data has also 
received attention from several researchers [11]. It has been 
found that the regular open-loop subspace identification 
algorithm yields a biased estimate when applied to closed-loop 
data [12]. This paper expands upon some recent ideas for 
developing subspace methods that can perform well on data 
collected in a closed-loop condition. Here, a method that aims at 
minimizing the prediction errors in several approximate steps is 
proposed. The steps involve using constrained least squares 
estimation on models with different degrees of structure, such as 
the block-Toeplitz model, and reduced rank matrices.  

The batch form is employed for data processing in a basic 
subspace identification algorithm. The acquired input-output 
data is processed as a whole. It is adverse to the online 
implementation and adaptive identified application. Due to the 
time-varying nature of industrial processes, online model 
assessment is necessary for determining whether model 
re-identification is needed [13]. At present, there are two ways 
to conduct online adaptive subspace identification; one is the 
recursive identification method [14], and the other is the 
receding window method [15]. The primary obstacle to the 
implementation of adaptive subspace identification is 
developing online QR and SVD decomposition algorithms. A 
QR decomposition procedure is proposed by simultaneously 
applying data updating and downdating, and outperformed 
traditional algorithms in terms of computational efficiency. 
Multivariable constraints arise due to physical limitations, 
quality specifications, safety concerns, and limiting the wear of 
the equipment [16]. The prediction capability of MPC is useful 
in anticipating constraint violations and correcting them in an 
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appropriate way [17].  
In this paper, by online updating the R matrix with a receding 

window, the state-space model can be obtained from 
closed-loop data. It considers whether or not to update the 
system model by comparing the prediction errors before and 
after updating. The model predictive controller is then designed, 
and solves an optimization problem online; MPC tools allow for 
the solution of control problems with multivariable constraints 
on input and output. The salient features and the main 
contribution of the proposed method can be summarized as: 
 It is applicable for closed-loop systems. The closed-loop 

model can be obtained with QR and SVD factorization. 
 It provides an attractive method for online adaptive 

implementation. The adaptive model is obtained by 
updating the modified R matrix online. 

 It is an acceptable solution to the multivariable constraint 
problem via quadratic programming. 

The paper is organized as follows. In Section 2, the 
closed-loop subspace identification algorithm is given. Section 
3 provides the online adaptive implementation. The constrained 
adaptive predictive control method is highlighted in Section 4. 
The simulation results are presented and discussed in Section 5. 
Finally, Section 6 presents the conclusions. 

II. THE CLOSED-LOOP SUBSPACE IDENTIFICATION ALGORITHM  
Given a general state-space system of order n  in innovations 

form: 
 

( 1) ( ) ( ) ( )
( ) ( ) ( ) ( )

x k Ax k Bu k Ke k
y k Cx k Du k e k

+ = + +
= + +

                                 (1) 

 
with input ( ) mu k ∈ , output ( ) ly k ∈ , state ( ) nx k ∈ , 
Kalman filter gain K  , and innovation sequence ( )e k . 

    The aim is to identify the system matrices n nA ×∈ , 
n mB ×∈ , l nC ×∈ , and l mD ×∈  using the finite closed-loop 

input-output data sequences { } 1
( ) N

k
u k

=
 and { } 1

( ) N

k
y k

=
. 

Let us first introduce some preliminary notation. The vectors 
of stacked inputs, outputs, and innovations are defined as 

 
TT T T

TT T T

TT T T

( ) ( ) ( 1) ( 1)

( ) ( ) ( 1) ( 1)

( ) ( ) ( 1) ( 1)

f

f

f

y k y k y k y k f

u k u k u k u k f

e k e k e k e k f

 = + + − 

 = + + − 

 = + + − 







            (2) 

 
where f n>  is an integer chosen by the user. In addition, define 
 





A A KC

B B KD

= −

= −
                                         (3) 

 
It is well known that we can rewrite Eq. (1) as follows: 
 

 ( 1) ( ) ( ) ( )
( ) ( ) ( ) ( )

x k Ax k Bu k Ky k
y k Cx k Du k e k

+ = + +
= + +

                                 (4) 

 
Let us now turn to the idea of the method of this paper. First, 

we will use Eq. (4) to form the subspace data model: 
 

  ( ) ( ) ( ) ( ) ( )f f f fy k x k Hu k Gy k e k= Γ + + +                             (5) 
 

where 
 











   

1 2 3

0 0

0
, ,

f f f

C D

C A CB D
H

C A C A B C A B D
− − −

   
   
   Γ = =   
   
      





    



    



 

2 3

0 0 0
0 0

0
f f

CK
G

C A K C A K
− −

 
 
 = 
 
  





   



            (6) 

 
Consider the Hankel representation: 
 

, , , , , , , , ,k i j i k j i k i j i k i j k i jY X H U G Y E= Γ + + +              (7) 
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 and the Hankel matrices from input-output data 

are
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. The state vector 

, 1 1k j k k k jX x x x+ + − =   . , ,k i jE  is the Hankel matrix of 

the noise value.   
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It is now necessary to define two Hankel matrices for 
inputs and outputs: one of past values, given by 0, ,i jU  and 0, ,i jY , 

and another of future values, given by ,2 ,i i jU  and ,2 ,i i jY . The 

instrumental variable in the subspace method is chosen as a 
combination of past inputs and outputs: 

 

0, ,

0, ,

i j

i j

U
W

Y
 

= 
 

                                         (9) 

 
Multiplying Eq. (7) from the right by projection operators 

, ,k i jU ⊥Π  and WΠ  to remove the terms , ,i k i jH U  and , ,k i jE  

results in: 
 

, , , ,
,2 , ,

1 1lim lim
k i j k i j

i i j W i i j WU UN N
Y X

N N⊥ ⊥
→∞ →∞

Π Π = Γ Π Π       (10) 

 
This is solved in the usual way using the RQ decomposition: 
 

T
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We can therefore obtain: 
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T
2
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3
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                              (12) 

 
To find an estimate of the column spaces of  iΓ  and  ,i jX , we 

take the SVD of iO : 
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Given the linear system 
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                            (14) 

 
the least square method is used to obtain 
 

 

 

 
2

1, ,

, , ,
, , , ,

arg min i j i j
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A B A BX X
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+      
= −      

          
    (15) 

 

and the system matrices ( , , , )A B C D  can be estimated. 
However, it is performed “offline.” To implement “online,” we 
should update the R  matrix. 

III. ONLINE ADAPTIVE IMPLEMENTATION 
In adaptive control, model parameters are required to be 

updated online. In this paper, the updating law is based on a 
receding window, as illustrated in Fig. 1, and the explication can 
be seen in [15]. 

Let  
 

4
1 2G [ ] i j

jG G G ×= ∈                                   (16) 
 

Where 
 

T
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c
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 , 1 c j≤ ≤                    (17) 

 
Suppose a new set of input and output data vector is 
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= = 
 
 

               (18) 

 
In the receding window approach, the input and output data 

of the current process are augmented and the oldest data is 
discarded. The new data 1jG +  is then added to the G  matrix in 
the last column, and the new G′  is 

 
4

2 3 1G [ ] i j
jG G G ×
+= ∈′

                                 (19) 
 
The key of QR decomposition in the receding window is to 

obtain the decomposition results of G′  from the results of G  
via a series of appropriate transformations. The QR 
decomposition of G′  is 

 

 

y

y

u

u

0 1i − i 2 1i −

0 2 2i −

1 i 2i1i +

1

0

0 2 1i −  
Fig. 1 The online implementation of a receding window 
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TRG Q′ ′ ′=                                     (20) 

Introduce intermediate matrices + 4 ( 1)
1 2 1R [ ] i j

jR R R × +
+= ∈   

and 1R jA R + =   , [ ]1 RB R ′= . Define ia  and ib  as the i  

rows of A  and B , respectively: 1 2 ( 1)[ ]i i i i ja r r r +=  , 

1 2 ( 1)[ ]i i i i jb r r r +′ ′=  . 
According to the QR decomposition, then 

T
+ T

1 2 1 1 T

T
T

1 T

0
R [ ] R

0

0
R

0

j j
Q

R R R Q R A
I

I
R Q B

Q

+ +

 
 = = =   

 
 

′ ′ = =    ′ 



        (21) 

 
According to the orthogonality of Q  and Q′ , we can obtain 
 

T TAA BB=                                      (22) 
 

by expanding Eq. (21), the variables of R′  can be obtained: 
 

1
1 2

2 2
1

T

1

i

ii i i ii k
k

r a a r r
−

=

 ′ ′= − − 
 

∑                                    (23) 

1

1 1
1

T1
j

j

ij i i j ik jk
kjj

r a a r r r r
r

−

=

 ′ ′ ′= − − ′  
∑                                  (24) 

 
The above method adds new data at each time while 

simultaneously deleting the oldest data. It would result in the 
whole window losing information, and would produce greater 
prediction error [18]. The existence of online disturbance 
influences identification precision. Therefore, we must decide 
whether or not to use the new R′  matrix to update the model 
with the inspection strategy of model precision. This strategy 
depends on the prediction error. 

Calculate the following prediction error before updating the 
model: 

 

1 | 1ˆess k k ky y −= −                                (25) 

 
where ky  is the process output at k  time, | 1ˆk ky −  is the output at 

1k −  time that predicts k  time before updating, and   is the 
2-norm. 

Similarly, the prediction error after updating the model 2ess  
can be also introduced: 

 

2 | 1ˆess k k ky y −′= −                                 (26) 

 
where | 1ˆk ky −′  is the output at 1k −  time that predicts k  time 
after updating. 

While 1 2ess ess≤ , maintain the R matrix and the system 
model invariably. However, when 1 2ess >ess , use the new R′  

matrix to update the system model. At the next sample time, 
when the new data arrives, recycle the above process. 

IV. MULTIVARIABLE CONSTRAINED ADAPTIVE PREDICTIVE 
CONTROL 

The model predictive control strategy is an interesting 
alternative for the control design method. It allows for the 
incorporation of not only reference trajectories, but also 
multivariable constrains control signals and outputs. It is used to 
implement an indirect adaptive control method using the online 
subspace algorithm with MPC tools. These MPC tools allow for 
the solution of control problems with multivariable constraints. 
A block diagram of the proposed system is illustrated in Fig. 2. 

Fig. 2 The structure of the multivariable constrained adaptive 
predictive control system 

 
Constraints on the inputs and outputs of the system are based 

on the physical limits of the process being controlled. The limits 
fall into the following categories: 

 
min max

min max

min max

u u u
u u u

y y y

≤ ≤
∆ ≤ ∆ ≤ ∆

≤ ≤

                               (27) 

 
as the purpose is to optimize the cost function through the set of 
future control variables fU∆ , the effects of these constraints on 

fU∆  must be determined.  

Given [ ] [ ]T T,m m m m m l l l l lF I I I I F I I I I= = , we can 
write Eq. (27) as a model predictor: 

 
min max

min max

min max

m f m

m f m

l f l

F u U F u
F u U F u
F y Y F y

≤ ≤

∆ ≤ ∆ ≤ ∆

≤ ≤

                              (28) 

 
After determining the constraints on fU∆ , these constraints 

can be incorporated into a matrix inequality: 
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, with P  and M  being the prediction and 

control horizons, respectively. wL  and uL  are the subspace 
prediction matrices, and can be obtained from the least square 
method [19]: 
 

2

,
min ( , )

w u

p
f w uL L f F

W
Y L L

U
∆ 

∆ −  ∆ 
                       (30) 

 
where fY∆  is the set of future output variables.  

We are looking for a cost function of a standard quadratic 
objective 

 
T T1

2 f f fJ U h U U f= ∆ ∆ + ∆                                 (31) 

 
where ( ) ( )T

l u l uh T L Q T L R= + ,  

( ) ( )T ( )l u l w p l df T L Q T L W F y k Y= ∆ + − , Q  and R  are weighting 

matrices, and dY  is the reference output. Equation (24) also can 
be denoted as 
 

fA U b∆ ≤                                        (32) 
 
This inequality can be solved by a quadratic programming 

(QP) algorithm [20], which can be defined in MATLAB as 
 

( , , , )fU quadprog h f A b∆ =                                (33) 
 
After adding the first control variable ku∆  of fU∆  to the 

previous plant input ku , the new plant input is 1k k ku u u+ = + ∆ . 
Measure the new plant output 1ky + , update pW∆ , and repeat the 
calculation to solve the optimization. 

V. SIMULATIONS 
The 2-CSTR system is a system that incorporates nonlinear, 

time-varying, and multivariable characters. The approach of 
multivariable constrained adaptive predictive control is applied  

Fig. 3 2-CSTR plant 
 

to a 2-CSTR process. The process is schematically presented in 
Fig. 3. A full description of the system can be found in [21-22]. 
The control problem is to maintain both tank temperatures at 
desired values. The inputs are two cooling-water flowrates, 
denoted by [ ]T

1 2,cw cwu Q Q= , and the outputs are two tank outlet 

temperatures, denoted by [ ]T
1 2,o oy T T= . 

The nonlinear differential equations of this system can be 
described as follows: 
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= − 6 2 5 6) ( )ax U x x+ −

      (34) 

 
where 1 0 2exp( / )K K E Rx= −  and 2 0 5exp( / )K K E Rx= − . The 
six states are 1 1Ox C=  (outlet concentration of CSTR1), 2 1Ox T=  
(outlet temperature of CSTR1), 3 1CWOx T=  (cooling water outlet 
temperature of CSTR1), 4 2Ox C=  (outlet concentration of 
CSTR2), 5 2Ox T=  (outlet temperature of CSTR2), and 

6 2CWOx T=  (cooling water outlet temperature of CSTR2). The 
system stability analysis can refer to paper [21]. 

The input constraints are 
 

3
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The input 1cwQ  was chosen to be a Gaussian random signal 
that shifts by 20%± . The lengths of the samples and sampling 
time were set to 300 and 0.1 s, respectively, and 150 samples 
were used to verify the identification accuracy. The 
comparisons in Fig. 4 and Fig. 5 demonstrate the responses of 
the online adaptive model and the offline fixed model of 1oT  and 

2oT , respectively, where “rf” is the process output. 
 

 
The online and offline prediction errors in Fig. 4 and Fig. 5 

are defined as 
 

( )

( )

2

1

2

1

100

N
m

ij ij
i

j N

ij
i

y y

y
ε =

=

−
= ∗

∑

∑
                            (36) 

 
where N  is the number of samples, and m

ijy  is the 
“one-step-ahead” predicted output. The prediction error of the 
validation data set is provided in Table 1, and the adaptive 
algorithm reduces the error considerably. 
 

 

Table 1. The prediction errors of the validation data set 
Outputs Online Offline 

1oT  1 2.0958ε =  1 0.8013ε =  

2oT  2 1.8045ε =  2 0.9403ε =  
 

The online adaptive models were then used to design the 
predictive controllers. The parameters of the proposed 

closed-loop subspace CAPC (CSCAPC) method are set as 
follows. The prediction horizon 10P = , and the control horizon 

3M = . To turn the weighting matrices, 201.5*Q I=  and 6R I= . 
In total, 100 seconds are conducted in the simulation. For 
comparison, an open-loop subspace CAPC (OSCAPC) method 
is used to control this system, and the parameters are selected to 
be the same as those set in the previous method. In the set-point 
test, the performance of outputs using the CSCAPC method is 
better than that of the OSCAPC method, as demonstrated in Fig. 
6 and Fig. 7 where “Rf” is the setting trajectory. 

VI. CONCLUSION 
In this paper, the design of a multivariable constrained 

adaptive predictive controller based on closed-loop subspace 
identification is addressed. The system matrices are identified 
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Fig. 4 The online and offline models of 1oT  
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Fig. 5 The online and offline models of 2oT  
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Fig. 7 The tracking performances of 2oT  
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via online closed-loop subspace identification, and a constraint 
handling method is then introduced to handle constraints for 
input and output variables. The proposed controller is 
successfully applied to a 2-CSTR process. It is demonstrated to 
be more efficient than the open-loop subspace CAPC, and the 
excellence of the proposed controller is explained. In an 
extension, this controller can be further applied to 2-D system, 
and the application of neural network to the controller will also 
be an interesting and meaningful topic. 
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